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The ground state of hard-core bosons on the square lattice with nearest and next-nearest-neighbor repulsion
is studied by quantum Monte Carlo simulations. A supersolid phase with vacancy condensation and “star”
diagonal ordering is found for filling ��0.25. At filling ��0.25, a supersolid phase exists between the star and
the stripe crystal at �=0.5. No supersolid phase occurs for ��0.25 if the ground state at half-filling is either
a checkerboard crystal or a superfluid. No commensurate supersolid phase is observed.
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Experimental advances in the field of ultracold atoms in
optical lattices1 have given renewed impetus to the investi-
gation of novel phases of matters, especially those displaying
simultaneously different types of order. One such phase is
the supersolid, featuring both diagonal and off-diagonal
long-range order, which has been the subject of much theo-
retical speculation.2 Recent claims of observation of this
phase in solid helium3 have generated some controversy.4

Theoretical studies have yielded strong evidence of super-
solid phases of lattice bosons, for various types of model
interactions among atoms, as well as of lattice geometries.5–8

In the presence of nearest-neighbor particle hopping and on-
site hard-core repulsion, the supersolid phase is only ob-
served on the interstitial side of a commensurate solid phase
�e.g., for 1 /3���2 /3 on the triangular lattice�.8 In contrast,
doping with vacancies results in the coexistence of an insu-
lating crystal and a superfluid by the formation of a domain
wall.9 Phase separation of vacancies is also observed in
ab initio simulations of helium crystals.10 This seems re-
markable, as Bose condensation of vacancies has long been
regarded as the paradigm for supersolidity.2 The purpose of
this work is to gain understanding in the asymmetry between
the behavior of vacancies and interstitials, and explore physi-
cal conditions that underlie a vacancy supersolid phase in
lattice bosons.

Our starting point is the well-known Hamiltonian

Ĥ = − t�
�ij�

�b̂i
†b̂j + H.c.� + V1�

�ij�
n̂in̂j + V2�

�ik�
n̂in̂k − ��

i

n̂i.

�1�

A square lattice with periodic boundary conditions of N
=L�L sites is assumed. The boson density �filling� is �
=NB /N, where the number of particles NB is determined by

the chemical potential �. The operator b̂i
†�b̂i� creates �anni-

hilates� a hard-core boson on site i, with a maximum occu-

pation number n̂i= b̂i
†b̂i of one particle per site. The first term

of Eq. �1� describes particle hopping to a nearest-neighboring
site with amplitude t, which is our energy scale, t=1. The
second and third terms represent repulsive interactions be-
tween bosons on nearest- and next-nearest-neighboring sites,
respectively.

Previous studies of the ground state of Eq. �1� have

yielded evidence of three possible phases at half-filling ��
=0.5�: a superfluid, a checkerboard solid, and a stripe solid.
The latter two are commensurate and insulating phases. Dop-
ing the stripe crystal away from half-filling yields a super-
solid phase, whereas a first-order quantum phase transition
separates the checkerboard crystal from a superfluid.5 For
sufficiently strong next-nearest-neighbor repulsion, Hamil-
tonian �1� also features a commensurate crystal phase at
quarter11 filling, referred to as “star” �Fig. 1�. It has also been
shown that a supersolid phase can occur upon doping the star
solid above quarter-filling.6

In this work, we systematically investigated the ground-
state phase diagram of Eq. �1�. Our main findings are the
following:

�i� Doping a star solid with vacancies always gives rise to
a supersolid phase.

�ii� Between a star and a stripe solid a supersolid phase
can be observed; phase transitions are continuous.

�iii� If the phase at half-filling is not a striped solid but a
checkerboard solid or a superfluid, no supersolid phase ex-
ists. First order phase transitions separate superfluid from
crystal phase�s�.

�iv� In agreement with Ref. 6, we find no commensurate
supersolid phase.12

Our Monte Carlo simulations are based on the worm al-
gorithm in the lattice path-integral representation,13 using the
implementation described in Ref. 14. The simulations are at
low temperature �typically �=L� in order to extract the prop-
erties of the system in its ground state.

FIG. 1. �Color online� Classical, degenerate star crystal phases
at quarter-filling on the square lattice. Filled circles represent par-
ticles, empty circles empty sites. Quantum fluctuations lift the de-
generacy, selecting �a� as the ground state if V1�2V2, �b�
otherwise.
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In order to characterize the various phases, we computed
the superfluid fraction �S using the well-known winding
number estimator,15 as well as the static structure factor

S�Q� =
1

N2���
i=1

N

n̂ie
iQ·ri�2� , �2�

where �. . .� stands for thermal average. Presence of crystal-
line long-range order is signaled by a finite value of S�Q� for
some specific wave vector. In particular, Q= �� ,�� is the
wave vector associated to checkerboard order at half-filling,
whereas Q= �� ,0� , �0,�� signals striped order at half-filling,
as well as star order at quarter-filling.

Figure 2 summarizes our results for the ground-state
phase diagram of Eq. �1�. Three distinct phase boundaries are
identified. The first one �open circles� separates a superfluid
from a star crystal at quarter-filling. In this work, we focus
our attention on the region above the open circles, i.e.,
wherein a star crystal exists. The other two phase boundaries
refer to the behavior of the system at half-filling, separating a
stripe crystal �filled boxes� 	checkerboard crystal �filled
circles�
 from a superfluid. We will now discuss the physical
behavior at other densities as a function on V1 and V2.

Figure 3 shows the density computed as a function of the
chemical potential for V1=8, V2=3.5. The ground state of the
system is a checkerboard crystal at half-filling. Density
jumps signal first-order phase transitions above quarter-
filling and below half-filling; everywhere else the curve is
continuous albeit with a clear discontinuity of the first de-
rivative �i.e., of the compressibility� on approaching �
=0.25 from below. Figure 4 displays the superfluid density as
well as the static structure factor, computed for both �� ,0�
and �� ,��. The superfluid density is everywhere finite, ex-
cept at commensurate fillings; whereas the static structure
factor is finite at and near commensuration.

Based on these results, we conclude that the system is
superfluid for 0.25���0.5, with first-order quantum phase
transitions to the star �checkerboard� crystal at �=0.25 ��
=0.5�. For 0���0.25, on the other hand, the system fea-
tures two continuous phase transitions, one from a superfluid
to a vacancy-based supersolid, corresponding to the change
in slope of the ���� curve, and the other from the supersolid
to the star crystal at �=0.25. It is interesting to compare the
results right above and below quarter-filling �Fig. 4� in order
to appreciate the effectiveness in distinguishing a homoge-
neous supersolid phase from coexistence of two phases.

A similar scenario is observed for �V1 ,V2� pairs for which
the ground state of the system at half-filling is superfluid,
where the only difference is the absence of the crystalline
phase at �=0.5. In this case too, a vacancy-based supersolid
exists below quarter-filling and a first-order phase transition
separates the star crystal from a superfluid above quarter-
filling. The superfluid phase extends all the way to half-
filling as the competition between nearest-neighbor and

FIG. 2. �Color online� Ground-state phase diagram of Eq. �1�.
Lines are guides to the eyes. Symbols lie at computed phase bound-
aries, namely between �a� a star crystal and a superfluid at �
=0.25 �open circles� �b� a “striped” �� ,0�, �0,�� crystal and a
superfluid at �=0.5 �filled boxes� and �c� a superfluid a “checker-
board” crystal �filled circles�, also at �=0.5. Statistical errors are
smaller than symbol sizes. Results at �=0.5 are consistent with
previous works �Ref. 5�.

FIG. 3. �Color online� Density � vs chemical potential � for
V1=8, V2=3.5. Statistical errors are smaller than symbol sizes. A
first-order quantum phase transition separates the star crystal at �
=0.25 and the checkerboard crystal at �=0.5 from a superfluid
phase at intermediate densities. Results shown are for a square lat-
tice with L=24. A continuous phase transition to a vacancy super-
solid occurs below �=0.25.

FIG. 4. �Color online� Superfluid density �S �upper panel� and
static structure factor S�Q� �lower panel� for V1=8, V2=3.5 for
two system sizes and the two wave vectors Q= �� ,�� and Q
= �� ,0� , �0,��. Statistical errors are smaller than symbol sizes.
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next-nearest-neighbor interactions does not result in any
crystal ordering. Results for one example in this region, i.e.,
V1=6.5, V2=3.5, are shown in Figs. 5 and 6.

This behavior should be contrasted to the one shown in
Figs. 7 and 8 for the case V1=V2=5. This parameter choice
stabilizes a star crystal at quarter-filling and a stripe crystal at
half-filling. A supersolid phase exists everywhere between
the star and the stripe crystal. A vacancy-rich supersolid
phase occurs below filling 0.25, with a continuous phase
transition to a superfluid at lower densities. A phase transi-
tion also occurs in this case above quarter-filling, between a
star and a striped supersolid; its location is signaled by a
“kink” in the numerical value of the static structure factor
�Fig. 8, lower panel�. This phase transition was claimed to be
of first order in Ref. 6, based on a discontinuous jump in the
value of the quantity �S�� ,0�−S�0,��� across the transition.
If the values of V1 and V2 are such that a checkerboard crys-
tal or a superfluid emerges at half-filling, no supersolid phase
intervenes in the 0.25���0.5 interval.

The physical mechanism underlying the presence of a su-
persolid phase in this model away from commensurate fill-
ings, even on lattices other than the square, is whether or not
defects such as interstitials or vacancies can move without
frustration. On the triangular lattice at filling �=1 /3, and in
the presence of nearest-neighbor repulsion only, interstitial
particles can freely hop around, hence Bose condensing. At a
finite concentration of vacancies, on the other hand, the sys-
tem can lower its energy by forming a domain wall, i.e.,
vacancies phase separate.8 The roles are reversed in our case,
on the square lattice at quarter-filling. There is no cost in
moving a vacancy around, in either Fig. 1�a� or 1�b� sce-
narios. Vacancies will thus condense. Conversely, the lowest
energy needed to create an interstitial in the case of Fig. 1�b�
�i.e., V1�2V2� is 4V2, which requires that a crystal atom also
moves to an empty row. The energy can only be lowered by
higher order processes in t /V1, which gives rise to the same
domain-wall argument invoked above for vacancies. This is
the phase separation shown in Fig. 3.

FIG. 5. �Color online� Density � vs chemical potential � for
V1=6.5, V2=3.5, and linear system size L=24. Statistical errors are
smaller than symbol sizes. A continuous quantum phase transition
separates the star crystal from a supersolid on the vacancy side ��
�0.25�, whereas a first-order phase transition from the stripe crys-
tals to a superfluid exists on the interstitial ���0.25� side.

FIG. 6. �Color online� Superfluid density �S �upper panel� and
static structure factor S	Q= �� ,0� , �0,��
 �lower panel� for V1

=6.5, V2=3.5 for two system sizes. System size is L=24. A super-
solid phase exists only on the vacancy side below quarter-filling.
The ground state of the system at half-filling is superfluid.

FIG. 7. �Color online� Density � versus chemical potential � for
V1=5, V2=5, and linear system size L=24. Statistical errors are
smaller than symbol sizes. Continuous quantum phase transitions
separate both star and stripe crystals from supersolid phases on both
sides. A continuous phase transition from a supersolid to a super-
fluid takes place below quarter-filling.

FIG. 8. �Color online� Superfluid density �S �upper panel� and
static structure factor S	Q= �� ,0� , �0,��
 �lower panel� for V1=5,
V2=5. System size is L=24. A supersolid phase exists everywhere
between quarter- and half-filling, and below quarter-filling.
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The lowest energy needed to create an interstitial in the
case shown in Fig. 1�a� �i.e., for V1�2V2� is 2V1, which
corresponds to an interstitial between two crystal atoms.
Those two crystal atoms can now hop around at no potential-
energy cost, which corresponds to the supersolidity seen in
Fig. 7. This simple perturbative argument fails to account for
the scenario of Fig. 5, as higher order processes renormalize
the transition point. The same physical considerations also
easily explain the lack of a supersolid phase of either vacan-
cies or interstitials on the kagomé or honeycomb lattices.16

In an optical lattice, interactions among nearest- and next-
nearest-neighboring atoms could arise from long-ranged
�e.g., dipolar� interactions among particles. The ratio be-

tween V1 and V2 for polar molecules is 2��2�. The star solid,
and the corresponding vacancy supersolid might thus be seen
in experiment for V1�10 �see Fig. 2�,17 albeit with rather
strong requirements on the density and temperature. Obser-
vation of a supersolid seems thus possible with existing tech-
niques.
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